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ON THE CHARACTERIZATION OF THE
DIMENSION OF A COMPACT METRIC
SPACE K BY THE REPRESENTING
MATRICES OF C(K)

BY
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ABSTRACT

We state and prove some characterizations of the topological dimension of
compact metric spaces K by the matrices representing C(K) as a predual of
Li(u).

1. Introduction

In [5] Lazar and Lindenstrauss have introduced the concept of representing
matrices for separable preduals of L,. They show, that if X is a separable
Banach space, such that X* is isometric to L,(u) for some measure u, then X
has a representation

o)) X=U E., E.CE..., E.=I7, n=12,---.
n=1

Moreover, the isometries E, — E,., can be chosen so that if {e.;}/-, is the
unit-vector basis of /5, then there exist reals {a.;}/-., so that

a] €ni = €urtit Qui€psine; 1SEi=n; n=12,---,
and
(3) Z’an,ilélv n:]az9.“‘

i=1

" The contribution of the first named author to this paper is a part of his Ph. D. thesis prepared
at the Hebrew University of Jerusalem under the supervision of Professor J. Lindenstrauss, and
has been supported by a graduate fellowship from Odense University, Denmark.

™ The contribution of the second named author to this paper is a part of his Ph. D. thesis
prepared at the Hebrew University of Jerusalem under the supervision of Professor J. Linden-
strauss.

We wish to thank Professor Lindenstrauss for his advice and interest.

Received May 2, 1975

148



Vol. 22, 1975 DIMENSION OF METRIC SPACE 149

The triangular matrix A ={a.;}i=. is called a representing matrix of X.
Theorem 5.2 of [5] implies, that if X is the space A(S) of continuous affine
functions on a compact metric Choquet-simplex S, then A can be chosen so
that

@) Y au=1,n=12---,
i1

In particular (4) applies to spaces X = C(K) of real-valued continuous func
tions on a compact metric space K.

Theorem 5.1 of [5] states that X = C(K) for a compact metric 0-dimensional
space K if and only if there exists a representing matrix Afor X, so that, in
addition to (4), A has the property, that for each n there exists an 1=i=n
with a,;, = 1.

In [7. p. 167] an extension of this theorem was conjectured. We present an
example which shows that the answer to the problem in [7] is negative, but
prove an extension very similar to that proposed in [7]. Let now A = {d..}i=. be
a matrix, for which (3) and (4) are satisfied. Foreachn=Z1land 1 =i<n we
define inductively a sequence {P.;}; | as follows:

(5) P:,..:S,;, for l:],---,n

and
1

6) Piu':zal |_,'P',l...' forl=n+1,n+2,---,
i :

Observe that
(7N P.;'=a.; and

®) > Pii=1for nl=1.2,-"
i-1
We define also the real number A(A) by

9 A(A)=Ilimsup inf max PlL..

n—x fel 1=isn

The next section is devoted to the investigation of the réle played by the Pi;
and A(A) in the case where X is a C(K)-space.

2. Preliminary observations on representing matrices of C(K) spaces

Throughout this section we assume that A = {a,,}:z. is a matrix satisfying (3)
and (4) and representing a C(K)-space for a compact metric K. Let
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{€n.i}isnn-12.. be the sequence of unit-vector bases of the [ corresponding to A
by (1) and (2). As observed in [5, p. 185], e, is an extreme point in the unit ball
of C(K), so e, (x)|=1 for all x € K, and (passing to e!,= e,; - €,,) we may
assume that e,, = 1. Hence, by (2) and (4), the sets {e,. }isn, n =1,2,--- are
non-negative partitions of unity with ||e.;||= 1. Set

10) H(e.,)={xE€K|e,(x)=1}, i=n, n=12---,

Each H(e.;) is a non-empty compact subset of K and by (2) we have
H(e.;) D H(en..), so for each i, M ;_ H(e.:) # .

Lemma 1. Foreach i=1,2,--- (1 %.,H(e..) consists of a single point.

Proor. Assume x,y € () ;.. H(e,;)and x# y. Let f € C(K), so that f(x) =
1 and f(y)=0. By (1) there exist an n =i and a g = 3., aye,; € E,, so that
| f—g| <3 By assumption, e,:(x) = e, (y) =1, 50 e,;(x) = e,;(y) =0 for i#j.
Hence g(x)=g(y)=a and |a|=[f(y)—g(y)|<i but [1-a=
| f(x)—g(x)| <3 which is a contradiction. |
Put, in view of Lemma 1,

(11) x}= N He) i=12-.

LemMa 2. The set {x;}7-, is dense in K.

Proor. Assume the converse, i.e. there exists an open subset U of K with
{x}r-iNU =@. Let f€ C(K) be such that ||f||=1 and f(K\ U) = {0}. By (1)
there exist an n and a g = 2., aie,; € E, with ||[f —g||<3}. Asin Lemma 1 we
get that a; = g(x;), so since f(x;)) =0, |ai | <3 Hence |g|=Z" | ai | eni <31k
or ||g]l<i This gives that 1 =|f[=[f-gl+ilgll<i+i=1. [ |

LemMa 3. Pl.=e.(x), i=n,n,1=12--

Proor. It is easily checked that the sequence {e..(x;)}i-, satisfies (5)
and (6). | |
From (9) and Lemma 3 it follows that

(12) A(A) =lim sup inf max e,; (x;).

n—soc Is] 1s5isn

Hence, for each A < A(A), there exist infinitely many n’s, so that

(13) inf max e.; (x;)Z A.
1sl Isisn

This and LLemma 2 prove
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LEMMA 4. For each A <A(A), there exist infinitely many n's, so that
MaX sisn ni = A.

For each n =1,2,-- - define the projection Q,: C(K)— E, by
(14) Vi€ C(K): Quf = 2 f(x) €ns.
Clearly | Q.| =1 and Q. maps C(K) onto E,. We claim that

Lemma 5. For all f € C(K), lim,_.|f - Q.fll=o0.

Proor. Let f& C(K) and & >0. By (1) there exists an n,, so that for all
n=n, there is a g=3%.,g(x)e.; EE, with [|[f-g|<e In particular
|g(x) = f(x) | <e. 50 if x € K, |g(x) ~ Quf(x)| S Tt | g(x) — fx) | eni(x) = 6.
This gives that |[g—-Q.f|=e, so for all n=n, If-Q.fll=
If-gl+lg—Qufll=2e. .

3. Statement of the main results

In [7] Lindenstrauss and Tzafriri proposed the following extension of [5,
theor. 5.1]:

ProBLEM 1. Let K be a compact metric space. Is it true that dim K = d if
and only if C(K) can be represented by a matrix A = {a,, };s. With ', a,; = 1
for all n and so that for each n at most d + 1 of the numbers {a..}’., are
non-zero?

(By dim K we denote the topological dimension of K as defined in e.g. [9] or
[4]).) We can prove the following two theorems which characterize dim K by
the matrices representing C(K). Theorem 2 gives an affirmative answer to the
“only if”’ —part of Problem I, but in Section 8 we present an example which
shows that the property in Problem 1 eventually does not say anything about
dim K, when d = 1.

THeorREM 1. Let K be a compact metric space. Then dim K = d if and only
if C(K) can be represented by a matrix A ={a,,}isn with 27, a,; =1 for all n
and so that

1
15 -
(15) AMA>73
THEOREM 2. Let K be a compact metric space. Then dimK =< d if and only
if C(K) can be represented by a matrix A = {an:}isn with =7_,a,, =1 for all n
and enjoying the following properties
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(16) for each n, at most d +1 of the numbers {a,.)'-, are non-zero, and all
the non-zero a.; are equal (and hence equal to 1/J,..,, if J,., is the number of
non-zero a.;). In particular a,; €{0.1/(d + 1),1/d.- - -, 1}.

(17) for infinitely many n's and all I, at most d + 1 of the numbers {P. }-,
are non-zero.

In particular for these n’s, maxX,sisa P Z I/(d+ 1) for all I, so A(A)=
1/(d +1).

REMARKs. (i) Since (17) implies (15) it clearly suffices to prove the
“if"-part and the “only if""-part of Theorems I and 2 respectively. (ii) We can
construct a matrix representing C(0, 1) with the property (16) but not satisfying
(17). (iii) By Lemmas 3 and 4 and by (7). (16) only states that in the point x, ., at
most d + 1 of the functions {e,;}/, are non-zero, whereas (17) implies that for
infinitely many n’s, {e,.;}7., has the property that in each point of K at most
d + 1 members of this set are non-zero.

An immediate consequence of Theorems 1 and 2 is
THeoreM 3. Let K be a compact metric space. Then

1

1
where the max is taken over all representing matrices of C(K), satisfving (4). In
particular dim K == if and only if A\(A) =0 for every A representing C(K).

In the next section we recall some theorems from dimension theory. which
we shall use in the sequel. [n Section 5 we prove the “‘only if "-part of Theorem
2 and in Section 6 we prove the *‘if"-part of Theorem 1. In Section 7 we state
and prove an extension of the “if”-part of Theorem 1 to the setting of
Choquet-simplices. The final section is devoted to examples and open prob-
lems.

4. Facts from dimension theory

Let K be a compact metric space. An open cover U of K is a finite collection
of open subsets of K whose union is K. By mesh-% we denote max, ca
diameter (U). It is easy to prove and well known, that if % is an open cover of
K, then there exists a 8 >0 called a Lebesgue number of % such that each
subset of K with a diameter less than 8 is contained in some element of U. U is
said to be of order =d if no d +2 distinct members of % intersect. The
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following characterization of dimension is proved in [4): dim K = 4 if and only
if for each ¢ > 0 there exists an open cover U of K with mesh U < ¢ and of
order less than or equai to 4.

The following deep theorem is due to Nagata ([9. p. 138]). See also [8] for a
proof. Nagata's theorem will be our main tooi in proving (17) of Theorem 2.

NaGaTa's THEOREM. Let K be a compact metric space. Then dim K =d if
and only if there exists a topology preserving metric p on K {(called a Nagata
d-dimensional metric) with the following property:

(19) for each ¢ >0 and every d+3 points vy, --.Ya.2,x in K with
p(S(x. (e/)).yv)y<e, I =1,---,d+2, there exist l§i<j’§d+2 such that
P()’n-yl)<f'.

(S{x, r)denotes the ball in K with center x and radius r). It is obvious that if p
is a d-dimensional Nagata metric on K, then p has the following property:

20 ifv,.-- . va..,x are points in K, then there exist I, j, k with { # J, so that
Py ¥) = plxow).

Observe that the usual metric on the real line enjoys property (20), but not (19).

S. Proof of “only if’-part of Theorem 2

This proof is vitally influenced by the construction of the vsual Schauder
basis of C(0, 1) (see [10, p. 11]). The reader is strongly advised to have the case
K =[0.1] in mind when reading the proof.

Let dmK =d and let p be a d-dimensional Nagata metric on K. in
accordance with Nagata's theorem. We select now a sequence in K which will
eventually play the role of that defined in (11). In the usual construction of the
Schauder basis of C(0.1). this sequence is the set of dyadics.

First, let 8, = diameter (K) and let {x,,- -, x,} be points in K so that
(21 plx,x;}=8, for i#j.
(22) {S(x. 81, isanopencoverof K.

Clearly 2= n, < x. Next, let 8 be a LLebesgue number of the cover mentioned in
(22) and set

(23) 5,=min{%6. maxp(x.{x.,---.x,“})}

aFK
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and pick X...,* "', X, in K so that

(24) plxi,x;)zé, for I=i<j=n,
and
(25) {S(x;, 8,)}"2, 1isanopencoverof K.
Continuing in this way we get a sequence {x;};_, in K, an increasing sequence
2=n,<n,<--- of integers and positive reals 8,,8,,--- so that for each
[=1,2,---
(26) plxyx;)z 8 for 1=i<j=n,
27 {S(x, &)}, 1isanopencoverof K,
(28) 58,., isaLebesgue number of the covering {S(x; &)},,
29) S =max p(x,{x,, -, x,}D.
x€EK

(29) ensures only that n, < n,.,. Observe that Z;_,., 5, < § for each ! and
that {x;};-, is dense in K.

LemMa 6. {S(x, &)}, is of order =d forl=1,2, -

Proor. Letx €K and x € N 2% S(x;, &). By (20) there exist a, b, ¢ with
a# b, so that p(x, x,,) = p(x;, x) < &. This and (26) give that i, = i, |

For convenience we introduce the following notation: we call the points
{x\,++-,x,} the Ith generation, | =1,2,--- For every integer n >0 there is a
unique integer [(m) such that me,<m=ng,., (If 1=m=n, put
I(m)=0,n,=0.) For each | = 1,2, - - we define the relatives of x,, in the /th
generation (I-rel’s of x,) as follows:

(30) if I(m)<, the [-rel's of x,, are x,, itself,

€1} if I(m)=1, the I-rel's of x. are those x; in [th generation with
p(xmyxi)<819

32) if I[(m)>1, x; is an I-rel of x,, if x; is an I-rel of some (I + 1)-rel-of x,..
This inductive definition can also be stated explicitly as follows:

(33) x; is an [-rel of x,, if and only if either I(m)<land j=m,orl =I(m)
and there exist a sequence of (not necessarily different) indices j=j,

Jiets S Jimys Jromyer = m with ji = m; and p(x;, x,, )< & fori=L1+1,---, 1(m).
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Let us denote by R, the set of relatives to x,, in the /th generation and by J',
the cardinality of R,.. We write also R,, and J,, for R%™ and J{™ respectively.

Lemma 7. If x; ER., then p(x,, x;) <286

Proor. If 1 >1(m) this is obvious, so let [ =[/(m). From (33) we get that
p(x,,,, X,) < 6, + et + 8,(".) < 6’ + Ef-l‘.l 8, < 28[ (by 28). .

Lemma 8. JL=d+1 forall m and .

Proor. If [>1I(m) this is obvious, so let | =I(m), and x; € R,. By
definition there is an x, € R}, so that x; is a relative to x, in the /th generation.
From Lemma 7 we get that p(x,, X)) <28,.,<38 (by 28), so x, € S(x..,18).
Since p(x;, xi) < & this gives that p(S(x.,38), x;) < 8. If R!, consisted of more
than d + 1 points, we could apply Nagata’'s theorem to get x; and x; with
jir # j.=m and p(x;, x;,) < 8. Since x;, and x,, are in the /th generation this would
contradict (26). [ |

Remarks. (1) If ! =1(m), Lemma 8 follows easily from Lemma 7 and (20),
SO

(i) if K =[0,1] and {x;}i~, are the dyadics, Lemma 8 holds in spite of the
observation following Nagata’'s theorem.

Let us now show that if x, and x,, are close in the metric p on K, then they are
also close in the sense that they have common relatives:

LEMMA 9. Let n, m and | be positive integers. If p(x,, x,.) < 8,.., then there
exists a common relative x° in the Ith generation to all relatives of x, and x,, in
the (I +1)th generation, i.e.

(34) N RIAD if p(XnXm)< 8.

5ERLVIURLY!

Proor. We claim that diameter(R,;'URL")<585.,. Indeed, Ilet
¥»ZER'UR . If y,z € R, ' thenby Lemma 7, p(y, 2) < p(y, X,) + p(Xny 2) <
4 8,.,. The same argument applies if y,z € R If finally y € RY"'and z € RY,
also by Lemma 7, p(y,2) < p(y, %,) + p(Xn, X ) + p(Xm, 2) < 5 &,,.. From (28) it
follows that there is an x° in the /th generation so that R U RY' CS(x°, 8,)
and by definition of relatives we are done. |

DeriNITION. For I = 1,2, - - let E, be the subspace of C(K) consisting of
those functions for which
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(35) Forall m>n:fom)=—- 3 fx).

Jm XjERm
(Recall that R,, = R\¥™ by definition.)

ReEMARk. In the case K =[0,1], E, consists of those piecewise linear
functions in C(0,1) whose points of indifferentiability are contained in the set
of dyadics in the /th generation, {0,1/2'~',2/2"",-- - 1}

LemMma 10. E, is an n-dimensional subspace of C(K). Moreover for every
choice of n, reals, t,,- - -, t., there exists an f € E,, with f(x)=1t,i=1,---, n.

Proor. Clearly for every f € E,, || f| = sup{|f(x:)| |1=i=n,}, and hence
dim E,, = n,. We prove the second part of the lemma. Let t,,-- -, ¢, be given.
Define a function f on {x;};=, by

(36) f(x)=t for 1=i=n and f(xm)=]i S f(x) for m>n.

This determines f uniquely on {x,.}n-:. It remains to show that f is uniformly
continuous on {x,}»-, and hence can be extended (uniquely) to a function in
C(K). Set a = min;;=,t; and b = max,zi=, . The uniform continuity of f
follows from

37) If p(xn Xn) <8, then |f(x.)— f(x,,,)|<<d:1_1> “b-a).

To prove (37), let k be given. We may assume that k >[. (For k =I (37) is
trivial). Let x, and x,, with p(x., x.) < 8, be given. Since 8, = §., we can use
Lemma 9 to find an x' in () cerurs+ RE Let x; € R U RY!. Then

(38) f(x)—— E f(x;)
1
= f! ’*Z Z\H fx;)
! —1,f&x)  d
=Jf(")+ T b=grita+l
and similarly
(39) ) =F e +E S f)
! I xjeRriNtx')
N PN ) S . d
:T.-f(x )+_J: az—d+1f(x )+—d+la
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Hence the values of f on RL” U R are all in the interval

_[f(x") d fx") d
(40) [a”b’]_[d+l+d+la‘d+l+d+lb]

of length (b —a)d/(d +1).
Similarly, if k >/ +1 we can find an x"*" in () ,cri+2ups-2RI*'. This together
with (40) gives by the same calculations as in (38) and (39) that

(41) f(RPURYH Claya, by
where

&y d f(x™y, d
(42) [a"”b"']_[dﬂ+d+la”d+l+d+1b’]

is of length (b — a)(d/(d + 1))’
Continuing inductively in this way we get that

(43) f(RXURX)Clai.\, be.y] with b —a,=(d/(d+1))*"(b-a).

Since by definition the values of f in x, and x,, are convex combinations of the
values of f in R, and R respectively, we get that f(x,) and f(x,) are in
[ai..1, by -] too and the lemma is proved. ]

Lemma 1. C(K)= UL E,

Proor. Let g € C(K) and & >0 be given. Let [ be big enough so that
(44) p(x,y) <28 implies |g(x)—g(y)|<e.
By Lemma 10 there exists an f € E,, such that
(45) f(xm)=g(xn) for 1=m=n,.

We claim that ||f — g || = e. Indeed, let i be a positive integer and let x,, € R".
Then by Lemma 7, p(x,,x;) <28, so by (44) and 45),

(46) | f(x) — 8(x) | = | g(xm) — g(x) | <.
Since f(x;) is a convex combination of points in f(R}), (46) gives that
47 [f(x)—gx)|<e.

The sequence {x;}., is dense in K, so we are done. n
We are now ready to define the functions {e,,}:.. This is done inductively by

(48) e = lg,
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49) bnn(Xm)=8.m for m=n;un, n=273,...
(50) en €EE,.,,

and

(51) €niri= lni ~ ni(Xna) €poyma,i<n+1, n=12---
We also set

(52) E" =Span{e,|','};‘-|, n= 192$“'

Observe that (52) agrees with the previous definition of E,, and that (51) implies
that

(53) E.CE...,, n=1.2,---,

From Lemma 11 we get now that

(54) C(K)= {J E.

We claim that

(55) 0=e.=1x for i=n and n=12,---

Indeed, (55) is clearly true for n =1, so suppose it is true for all integers = n.

(49) and (50) give that (55) is true for €,.ine, SO let i=n. f m<n+1 or

n+1<mz=niu.ne then €,.1:(xm) = €, (x). Moreover, e..,(xn.+1)= 0,50 0

= €n-1.{Xm) = 1for 1 =m = ny(,.1yer. This and the fact that e .., € E yeye: give

that 0=e,.., = 1. |
The same arguments show that

(56) .i(Xn)=8,. for 1=im=n n=1,2,---

An induction argument using (48) and (51) shows easily that
57 Ee,,i=1x for n=1,2,---
i=t

Hence {e.;}/-, is a non-negative partition of unity with |e,;||=1, so E, is
isometric to [. Let us show that the corresponding matrix A = {€,;i(x,.1)};z» has
the properties (16) and (17) of Theorem 2. First

(58) Foralln,i =n, e, (x...) €{0,1/J...}.

Indeed, if n = ny).1, (58) follows at once from (56) and (35), since e.; € E

M)+l

If n<ng. then e..(xus)) =0, SO €u:(Xusr) = €a_y:(X.s1), which equals
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€n-2.i(Xn.1), €n—3.(Xs 1) and so on. Finally if { = ny,) we get €,,(X.+1) = €y, dXn 1)
Since e, € E.,., (58) follows from (56) and (35). If i > n,., then e,:(x..1)
equals e;;(x,..) which is 0 by (49). This proves (16) of Theorem 2. To prove (17)
we show:

(59) Foreachm,l =1,2,--- at most d + 1 of the numbers {e,,;(xn)}',

are non-zero.

If m = n, (59) is obvious by (56), so let m > n,. If e, (x,) >0, then by (56) and
the definition (35) of E,, x; must be a relative in the /th generation of x., i.e.
xi €ER,, so (59) follows from Lemma 8. This proves the “only if”-part of
Theorem 2.

6. Proof of the “if”’-part of Theorem 1

Assume now that K is a compact metric space and A ={a,;}is. is a
representing matrix for C(K), so that 7., a,; = 1 and A(A) > 1/(d + 2). We use
the notation of Section 2. For £ >0 set

(60) Uni={x EK|e.i(x)>¢}.
We need the following lemma:
Lemma 12, For all £ >0, lim,_..max,s;s.diameter(UZ,) = 0.

Proor. Let £ >0 and assume the converse, i.e. that there are a § >0, a
subsequence 0 <n, <n,<--- of the integers, integers i,,i,,--- with i, <n,,
and sequences {y..}_, and {z,}5-, in K so that

(61) P(YrsZm) Z b, €n,i, (Ym)>e and e, (zZn)>¢€.

Passing to subsequences we may assume that the sequences {y.}., and
{zm}m-1 converge to y and z respectively. By (61), y # z, whence we can find an
f € C(K) so that if m is large enough, then

(62) f(Yn)=0 and f(z,,)=1

and so that 0=f=1. Let m be any integer large enough to satisfy (62). We
show that ||f— Q..f||=&*(1+¢) for each such m, which will contradict
Lemma 5. If |f - Q..f|| < £*/(1+¢), then

2
13

6 7> 00~ Q)= Quufna) = 3 15 erni(n)

= f(xim) en,,.,i,,.(yn,.) = f(xn,,) €
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and similarly

£

e > ) = Quf(z) | = 1= 2 f(6) €nni(zn)

O fn) o (z) — S FX) €ni(zan)

i

= 1= f(Xin) = 2 Cani(Za) 21— f(x;,) — (1= €) = £ — f(X;,).

i#im

(63) and (64) together give that

g’ e €
65) 1+e ¢ T+e 1+e.

This proves Lemma 12. |
Recall that by Lemma 4, if A(A) > A > 1/(d + 2), there exist infinitely many
n’s so that max,=;=.€.; = A, so we can find a sequence 1 = n, < n, < --- with

(66) max e, for 1=1,2,---.

> —_—

1sisn d+2

Thus for each [ =1,2,-- -, {U¢*?}%, covers K. This open cover is clearly of
order =d, since Zt;e,,=1 and by Lemma 12 we have that
lim,_... mesh{U /¢*?}«, = 0. From this it follows that dim K = d. [ ]

7. Dimension and Choquet-simplices

In this section we prove an extension of the “if’’-part of Theorem 1. Before
stating this extension, we introduce some notations. Let S be an infinite
dimensional metrizable Choquet-simplex (cf. [1]). A(S) is the Banach space of
continuous real valued affine functions on S with the sup-norm. As remarked in
Section 1, A(S)-spaces can be characterized as those preduals of L, which
have a representing matrix A = {a,,}i=. With 2=, a,; = 1. Every C(K)-space
for K compact metric is isometric to the space A (S), where S is the state space
S ={u € C(K)* ||u| = (1) =1} with the w*-topology from C(K)* ([1]).
Clearly in this case K = 4.S. Conversely it is well known that if 4.S is compact
then A(S) = C(3.5).

Now let A ={a.,;}i=. with ., a,; = 1 be a matrix representing a space A (S)
and {e,;}i=. the corresponding unit-vector basis of E,. We regard A(S) as a
closed subspace of ((3.S). Preceed now as in Section 2 with 3,5 instead of K
and A(S) instead of C(K). Problems arise only in the proof of Lemma 2, but
we can also prove
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LeEMMA 13, The set {x;}r_, is contained in 3.S and dense in 3.S.

Proor. Let us first prove the latter. Assume the converse, i.e. that V =

{x:}i-, does not contain 4,S. Then by the Krein-Milman-Rutman theorem ([2,
p- 801

(67) H = conv V; S.

In particular there is a z € .S\ H. By the Hahn-Banach theorem there
exists an f € A(S) with f(z) = 1 and max f(H) =0. As in the proof of Lemma 2
this implies that dist(f, U7-, E,) =1, which contradicts (1). To prove the first
assertion let i be any positive integer and let

(68) f= ;0 2% Tei.

Clearly

(69) Ifl=1

and

(70) {x}={x€S|[f(x)=1}.

Thus x; € 4.5, since it is a unique peak point for f. (]

THEOREM 4. Let S be a metrizable Choquet-simplex and assume that A(S)
has a representing matrix A ={a,.}:s. with £'_,a., =1 and A(A) > 1/(d +2).
Then dim C = d for every compact subset C of 3.S.

Proor. Proceed as in Section 7 with K and C(K) replaced by C and A (S)
respectively. The existence of a function f € A(S) so that 0= f =<1 and with
the property (62) follows easily from [1,p.91]. ]

REMARks. (1) We cannot prove that dim 4.5 = d by replacing in Section 6
K by 4.S. Compactness is strongly needed in Lemma 12. In the next section we
give an example where diameter ({x € 4.5 | e.,(x) > 1/3}) = 1 all n. (ii) The “only
if’-part of Theorem 1 cannot be extended to A (S)-spaces. We give in Section 8
an example of a simplex S with dim4a.S =0, but A(A) =3 for every matrix A
representing A(S).

8. Open problems and examples

From Section 7 the following problem arises:
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ProBLEM 2. Let S be a metrizable Choquet simplex and A ={a,.}isn a
matrix with 7., a.; = 1 and A(A) > 1/(d + 2) representing A (S). Does it follow
that dim 3.S =d or even dim 3.S= d?

Observe that from Theorem 4 it does not follow that dim 4.5 = d. There exist
simplices S with dim C <dim 4.5 for every compact subset C of 4,5 (see [6]
for such examples and also [3]). The following example will justify the remarks
preceding Theorem 4.

ExampLE 1. Let X be the subspace of ¢ —the space of converging
sequences in R —consisting of those sequences (t;)7., for which

an lime =3(t,+ ).

i

Define {e.;}is. in X as follows:

(72) e =1,
1 if k=1
(73) ens(k) = {o if 2=k=n,
3 else
1 if k=2
(74) e.2k)=10 if k=1 or 3=k=n,
3 else
(75) e.i(k)= 8, else.
ie.

(76) e =(1,1.1,1,1,-),
€2 = (10,523, ), €22 = (0,1,533,-),
.= (1,0,03,5,), €32 = (0,1,03,3,+-), €55 = (0,0,1,0,0,--+),
es;=(1,0,0,04,-), €42 = (0,1,0,0,3,+-),

€43 = (0,0,1,0,0,"'), €44~ (0,0,0,] ,0,"'), B
Set

an E. =span{e, -, n=12,
and let A ={a..}is. be the triangular matrix with
(78) a,=1,a.,,= a,,=3if n > 1and a,; = Oelse:

ie.
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It is easy to see then, that (1)-¢4) are valid, so X is an A(S)-space with A as a
representating matrix. Clearly 4,S = N, the natural numbers, and the points
defined in (11) are x; = i. 3,S= N= N U {x}, the one-point compactification of
N with the metric p(n,m) = [(1/n) = (1/m)|((1/=) = 0). That =& 3,S follows
clearly from (71), since = =4(1+2). We have now that

(80) A(A) =limsup inf max e,;(I)=1.

n—ex f&t ISisEn

Let V.?={k € N|e.,(k)>1/3}. Then by (73) VI2={l.n+1,n+2,--} with
diameter (V) = 1. Hence Lemma 12 is not valid in this case. To show that the
converse of Theorem 4 does not hold, we shall show that for every matrix
A ={a.}isn with Zi_ a,; = | representing X we must have A(A) =} although
dim 4, = 0. Indeed, let A be such a matrix, {e,.}ix. the corresponding
partitions of unity and {x;};_, as defined in (11). Since 4.S = N is a discrete
space, it follows from Lemma 13 that {x;}7-, = 4.S. Especially we can find i, and
iz, SO that x,, = I and x, =2, and hence, if n = max (i., i), we get that

(81 lim e, (1) = $(e.. (1) + €,,(2) =}
J—x

and

(82) lim e,.,(1) = 1(e.i{1) + €., (2)) = 1.

[—=

Hence, for every n = max(ii, i), Zixi,;, €n:(1) <4 if | is big enough (use (8)).
This, (81) and (82) imply that

(83) inf max e.;(I)=3 for n=max(,,i,)

& 1sisn

and we are done. |
The following example is due to J. Lindenstrauss.
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ExampLE 2. Let H and K be two compact metric spaces and A = {an,i}i=n
and B = {b,,};=. representing matrices for C(H) and C(K) respectively, so
that

(84) > @i =2 bu=1 and a., b, €{0,31}.
i=1 i=1
We show that also C(H % K) has a representing matrix C = {c,;};=» With

(85) Z Cn.i = 1 and Cn.i e {0, %» 1} .

i=1

Indeed let {e.:}i=. and {f..};s» be the positive norm-one partitions of unity
corresponding to the matrices A and B respectively,. Then the vectors
{€n; @ fu;}ii=1 defined by

(86) eni @ fui(h, k) = €ni(h)- foi(k) (h,k)EHXK
constitute for each n a positive norm-one partition of unity on H X K, i.e.

(87) E.:= span{e.; ® fui}ij-1 = 7.

Clearly E,»C Eu+1y and C(H X K) = U ., E,z, so it remains only to show that
the sequence E,, E,, E,,--- can be “filled up” so that the corresponding matrix
satisfies (85). We have that for every i,j = n,

(88) €ni ®fn,j = €n+1.i ®fn+l,j + Qni€rniin ®fn+|,j+
bn,jen+l,i®fn+l‘n+l + an,ibn.ien+l,n+l ®fn+l.n+l .

This shows that problems in filling up only arise when a,; = @.; = bpy = bny =3.
For convenience we will assume that n =j =k =2 and !/ =i =1 and fill up the
gap from E, to E,. The other gaps are treated similarly. The basis of E, is

(89) €1 ® frr, 2. @ fr2,€2:® fon and €22 foz.

Choose as a basis for E; the vectors

(50) 6,.® fiatie::® fr, e ® fraties® fiz, €22 for,
e:®f: and e, ® fizt+iess® fis.

Since, by (88), e, ® fa=les, ® fou+ i e:3® fail+ ies, @ fist+ i€ ® f3] we

get c,; =13 and clearly ¢.3= c44=0. Table I shows how we proceed
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TABLE 1
i 2 3 4 5 6 7 8 9
Es| @ 2, ®f22 2:®f e22®f22
,®f & ®fn €3:®f3
Es | +ien®fu |+ 1en®f | en®fx a2 ®fz | +3n®fn
&1®fn €1 ®f32 €3:®f3 3:8fy; 1®f33 32
Es | +3®f |+ 1@ | * #0®@f1 | + #n@fan | + 2n®fn |+ n®fs
,®fn €3:0f2 31®f33 £3:®fn
Er | eu®fn | tien®fn| €@ | +15@fn | “len®fn | “3en®fn | 6:0f
e ®fn 32Dt
Eg | 3 ®@fu €1®f32 3203 2®f2 |+ 23®fs |- #u®fs | en®fu 3®fn2
Eq | 5:®fsn £ ®fn2 & ®fn [27 ) % 32O 1 32®f3 ®fn €3)®fs2 £330/
with the corresponding matrix elements
4 | : 3 0 0
5 0 0 3 3 0
6 3 0 i 0 0 0
7 0 3 0 3 0 0 0
8 0 0 0 0 i 3 0

This observation and Theorem 2 show that if K is a product of 1 dimensional
spaces then C(K) has a representing matrix with a.. €{0,4, 1}. It is easy to see
that other operations (like cartesian products of infinitely many factors or
disjoint unions) preserve the property C(K) having a representing matrix of
the above type. We are naturally led to

ProBLEM 3. Isit true that every C(K)-space has a representing matrix {a.,}
with 27, a,; = 1 and a,, €{0,1,%7

The following example shows that the answer to Problem 3 is negative for
A(S)-spaces:

ExampLE 3. Let X be the subspace of c consisting of those sequences
(4:)7-, for which
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o1) Eﬂ”=%“+§”

As in Example 1 it is easy to prove that X is an A(S)-space. We claim that X
has no representing matrix A ={a,;}i=. with 3, a,; =1 and a., €{0,3,1}.
Indeed let A be any matrix with 3., a,, = 1 representing X = A(S). Let
{e.:}i=n be the corresponding partitions of unity in A (S) and {x:}- as defined in
(11). As in Example 1 we get that {x;};>, = 3.5 = N, so we can find i, and i, with
x, =1 and x, =2. Hence if n = max (i, i,) = n,, we get that

- _1 2 1.,.2,_1
(92) P_{E e'l.l'l(l) - 3 en.il(l) + 3 en,il(z) - 3 1 + 3 O - 3 .
Let [, be so big that
©93) %AD<%fmm11>u

By the same arguments as in Example 1 we can find an n,= n,, so that
{1,---, 1} C{x1,***, xa,}. Let now n be any integer = n,. Since e,;(x;) =8, for
i,j=n we get that e,,(1)=1 and e,;(!1)=0 for [ =2,---,1,. Since (by (2))
ni = €y, We get from (93) that e, (I) <3 for [ > I, so

(94) forallnzn;:e.;,(1)=1 and e, (1)<} for I>1.
Let now n = n,. We have
95) nis = Cnir iyt Aniy Cavins1 = €niriy + €nif(Xnsr) €nrrnsr
If €.i,(Xns1) =0, €niri, = €n,, SO
(96) Cnitiy = Cniiyt €air,i(Xns2)Cniznaa

= €Cniziy T €ni(Xn12)€niznrae

Continue in this way until the first m > n, for which e,;(x..) # 0. Such an m
exists by (92) and from (94) we get

o7 0< @i = €ni (X)) <3,
and we are done.
REFERENCES
1. E. M. Alfsen, Compact Convex Sets and Boundary Integrals, Springer, Berlin, 1971.
2. M. Day, Normed Linear Spaces, Springer, Berlin, 1958,
3. R.

Haydon, A new proof that every Polish space is the extreme boundary of a simplex, Bull.
London Math. Soc. 7 (1975).



Vol. 22, 1975 DIMENSION OF METRIC SPACE 167

4. W. Hurewicz and H. Wallman, Dimension Theory, Princeton, 1941.

5. A. Lazar and J. Lindenstrauss, Banach spaces whose duals are L, spaces and their
representing matrices, Acta Mdth. 126 (1971), 165.

6. A. Lelek, Dimension inequalities for unions and mappings of separable spaces, Colloq.
Math. 23 (1971), 69.

7. 1. Lindenstrauss and L. Tzafriri, Classical Banach Spaces, Springer, Berlin, 1973.

8. K. Nagami, A Nagata metric which characterizes dimension and enlarges distance, Duke
Math: 32-33 (1965), 557-562.

9. J. Nagata, Modern Dimension Theory, Noordhoff, Groningen, 1965.

10. I. Singer, Bases in Banach Spaces 1, Springer, Berlin, 1970.

INSTITUTE OF MATHEMATICS
THE HEBREW UNIVERSITY OF JERUSALEM
JERUSALEM, ISRAEL

AND
INSTITUTE OF MATHEMATICS,

ODENSE UNIVERSITY
ODENSE, DENMARK



