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ON THE CHARACTERIZATION OF THE 
DIMENSION OF A COMPACT METRIC 

SPACE K BY THE REPRESENTING 
MATRICES OF C(K) 

BY 
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ABSTRACT 

We state and prove some characterizations of the topological dimension of 
compact metric spaces K by the matrices representing C(K) as a predual of 
L,(~). 

1. Introduction 

In [5] Laza r  and  L i n d e n s t r a u s s  have in t roduced  the concep t  of r ep resen t ing  

matr ices  for  separable  preduals  of L~. They  show, that if X is a separable  

B a n a c h  space,  such that  X*  is i sometr ic  to L,(t~) for some measure  t~, then X 

has a r ep re sen t a t i on  

(1) X =  0 E . ,  E.  C E . + , ,  E .  = 1 7 ,  n = 1 , 2 , - . . .  
n = l  

e n Moreover ,  the i sometr ies  E.  ~ E.+, can  be chosen  so that  if { .,~}i=, is the 
a " un i t -vec to r  basis  of 17, then there exist  reals { ..~}~=,, so that  

(2) 

and  

e..~ = e.+,,i+ a..~e.+,,.+,; l <=i <=n; n = l , 2 , - . . ,  

(3) ~ l a . , , l < = l ,  n = 1 , 2 , . . .  
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The triangular matrix A ={ao.,},~, is called a represent ing matrix of  X. 

Theorem 5.2 of [51 implies, that if X is the space A ( S )  of cont inuous atline 

functions on a compact  metric Choquet-s implex S, then A can be chosen so 

that 

(4) ~ a,i. = 1, n = I, "~,-.. 
i - ' l  

In particular (4) applies to spaces X = C ( K )  of real-valued cont inuous func- 

tions on a compact  metric space K. 

Theorem 5. I of [5] states that X = C ( K )  for a compact  metric 0-dimensional 

space K if and only if there exists a representing matrix A f o r  X, so that, in 

addition to (4), A has the property,  that for each n there exists an 1 _-< i _-< n 

with a~., = I. 

In [7. p. t67] an extension of this theorem was conjectured.  We present  an 

example  which shows that the answer  to the problem in [7] is negative, but 

prove an extension very similar to that proposed in [71. Let now A = {a,.,},,~~ be 

a matrix, for which (3) and (4) are satisfied. For each n => 1 and ! _<- i =< n we 

define inductively a sequence {pt,~}7 , as follows: 

P L  

(5) 

and 

(6) 

Observe  that 

(7) 

pl,.,=&.j for l - -  1 , . . . , n  

= ~  a~ ~.iP~.~ for l = n + l , n + 2 , . . -  
i - I  

PT.'~' = a~., and 

(8) ~, PIo.,= I for n , l =  1 , 2 , - . '  
i - I  

We define also the real number  A(A) by 

(9) A(A) = lim sup inf max pl.~. 

The next section is devoted to the investigation of the r6te played by the P~.., 

and A(A) in the case where X is a C ( K ) - s p a c e .  

2. Preliminary observations on representing matrices of C ( K )  spaces 

Throughout  this section we assume that A = {a..~},~, is a matrix satisfying (3) 

and (4) and representing a C ( K ) - s p a c e  for a compact  metric K. Let  
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{e..i}i~ . . . .  J.2... be the sequence  of  un i t -vec tor  bases of  the l~ co r respond ing  to A 

by (I) and (2). As obse rved  in [5, p. 185], e,., is an ex t r eme  point  in the unit bali 

of  C ( K ) ,  so l e~.,(x) I = I for  all x ~ K, and (passing to et,., = e,., �9 e,.,) we may 

assume that e~.,---1. Hence ,  by (2) and (4), the sets {e,.,},~., n = 1 , 2 , . - .  are 

non-negat ive  part i t ions of  unity with IIe.., ]1 = I. Set 

(10) H ( e . . , ) = { x E K I e . . , ( x ) = l } ,  i<=n, n = l , 2 , . . .  

Each  H(e, . , )  is a non-empty  compac t  subset  of  K and by (2) we have 

H(e,.,)DH(e,+[.,), so for  each i, f"l 7 = , H ( e , . ~ ) ~ .  

LEMMA 1. For each i = 1 , 2 , . . .  ("1 7- ,H(e , . , )  consists of  a single point. 

PROOF. A s s u m e x ,  y E  f - l T . , H ( e . . , ) a n d x ~ y .  L e t f E C ( K ) , s o t h a t f ( x ) =  

1 and f (y )  = 0. By (1) there  exist  an n _--- i and a g = Z;'.~ a~e,.j E E., so that  

I l l -  g II < '. By assumpt ion ,  e,.,(x) = e,.,(y) = 1, so e,j(x) = e,.i(Y) = 0 for  i ~  ]. 

H e n c e  g ( x ) = g ( y ) = c t ,  and [ct, l = l f ( y ) - g ( y ) ] < � 8 9  but ] l - a , [ =  

I f(x)  - g ( x ) / <  ~, which is a cont radic t ion .  �9 

Put, in view of  L e m m a  1, 

( I ! )  {x,}= ~ H(e,.,) i = 1 , 2 , . . . .  
n z l  

LEMMA 2. The set {x~}7-, is dense in K. 

PROOF. Assume  the converse ,  i.e. there  exists  an open  subset  U of  K with 

{x,}7., O U = ~ .  Le t  f E C(K)  be such that  II f If = 1 and [ (K  \ U ) =  {0}. By (1) 

there  exist  an n and a g = YT_, a~e,.~ E E,  with I [ [ - g  I[ < ' .  As in L e m m a  i we 

get that  ct~ = g (x,), so since f(x~) = 0, I at I < �89 H e n c e  [ g ! =< Y-7-, I a~ I e,.~ < �89 ,~ 

or  II g If < ~. This  gives that I = IIf I[ --< [I f -  g If + II g H < �89 + �89 = I. �9 

LEMMA 3. pa.~=e,.~(x~), i=<n ,  n,  l =  1 , 2 , . . . .  

PROOF. It is easily checked  that the sequence  {e,.~(xl)}7.~ satisfies (5) 

and (6). �9 

F rom (9) and L e m m a  3 it fol lows that  

(12) A(A) = lim sup inf max e,., (x,) .  

H e n c e ,  fo r  each  A < A(A),  there  exist  infinitely many  n ' s ,  so that  

(13) 

This and L e m m a  2 prove  

inf max e,,. (x,) > A . =  
I=i; I  I = i i = i n  
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LEMMA 4. For each A < A(A), there exist infinitely many n's, so that 
max~.i~, e., _-> A. 

For each n = 1 , 2 , . . .  define the projection Q.: C ( K ) ~  E. by 

(14) Vf E C ( K ) :  Q.f  = ~ f(x,)e. . , .  

Clearly ][ Q. 1[ = 1 and Q. maps C ( K )  onto E.. We claim that 

LEMMA 5. For all f E C(K) ,  l im .~ l l  f -  Q.fll = O. 

PROOF. Let  f E  C ( K )  and e > 0 .  By (I) there exists an no, so that for all 

n->_no there is a g = E T . , g ( x , ) e . . ~ E E ,  with [ I f - g l l < e .  In particular 

] g (x,) - f(x,  ) ] < e. so  if x ~ K,  I g (x)  - Q . f ( x )  ] <= E~., I g (x,)  - f (x , )  I e.., (x )  <- e. 

This gives that II g - Q. f  II <-<- e, so for all n _-> no, II f -  Q.f  II--< 
IIf - g I[+ I[g - Q.f  I[ <- 2e. �9 

3. S t a t e m e n t  of the  m a i n  resul ts  

In [7] Lindenstrauss  and Tzafriri  proposed the following extension of [5, 

theor. 5.1]: 

PROBI.EM I. Let K be a compac t  metric space. Is it true that dim K _-< d if 

and only if C ( K )  can be represented by a matrix A = {a..i}~. with E?_~ a..~ = I 

for all n and so that for each n at most  d + I of the numbers  {a..~}7~, are 

non-zero? 

(By dim K we denote the topological dimension of K as defined in e.g. [9] or 

[4].) We can prove  the following two theorems which character ize  dim K by 

the matrices representing C(K) .  Theorem 2 gives an affirmative answer  to the 

"only i f " - - p a r t  of Problem I, but in Section 8 we present  an example  which 

shows that the proper ty  in Problem i eventually does not say anything about  

dim K, when d >- 1. 

THEOREM 1. 

if C ( K )  can be represented by a matrix A = {a.,~}~. with Z~=t a.,~ 

and so that 

Let K be a compact  metric space. Then dim K <= d if and only 

= ! for all n 

(15) A ( A ) > ~  I 
d + 2 "  

THEOREM 2. 

if C ( K )  can be represented by a matrix A = {a.,~}~. with ~7_~ a.,~ = 1 for all n 

and enjoying the following properties: 

Let K be a compact  metric space. Then dim K <= d if and only 
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(16) for each n, at most  d + l of  the numbers {a,.,}?_, are non_zero, and all 

the non-zero a,.~ are equal (and hence equal to I/J, . , ,  if J, . ,  is the number of  

non-zero a,.~). In particular a,.~ E {0, 1/(d + I), 1/d.. �9 .. 1}. 

(17) for infinitely many n 's  and all I, at most  d + I o[ the numbers {pt.,}7_, 

are non-zero. 

In particular for these n's. max,~;.~.P;..,>=l/(d + I) [or all I, so A ( A ) -  > 

l /(d + 1). 

REMARKS. (i) Since (17) implies (15) it clearly suffices to prove the 

" i f" -par t  and the "only if"-part  of Theorems  I and 2 respectively.  (ii) We can 

construct  a matrix representing C(0. I) with the proper ty  (16) but not satisfying 

(17). (iii) By Lemm as  3 and 4 and by (7). (16) only states that in the point x,+, at 

most d + I of the functions {e,.i}7=, are non-zero,  whereas (17) implies that for 

infinitely many n ' s ,  {e,.,}?_, has the proper ty  that in each point of K at most 

d + 1 members  of this set are non-zero. 

An immediate  consequence of Theorems 1 and 2 is 

THEOREM 3. Let K be a compact  metric space. Then 

(18) dim K - 1 
max A (A) 

where the max is taken overall  representing matrices of  C (K) ,  satisfying (4). In 

particular dim K = ~c if and only if A(A ) = 0 for every A representing C(K) .  

In the next section we recall some theorems from dimension theory,  which 

we shall use in the sequel. In Section 5 we prove the "only if"-part  of Theorem 

2 and in Section 6 we prove the " i f" -par t  of Theorem I. In Section 7 we state 

and prove an extension of the " i f" -par t  of Theorem I to the setting of 

Choquet-simplices.  The final section is devoted to examples  and open prob- 

lems. 

4. Facts from dimension theory 

Let K be a compact  metric space. An open cover  ~ of K is a finite collection 

of open subsets of K whose union is K. By m e s h - ~  we denote m a x u ~  

diameter  (U).  It is easy to prove and well known, that if o// is an open cover  of  

K, then there exists a 8 > 0 called a Lebesgue number  of ~ such that each 

subset  of K with a diameter  less than 8 is contained in some element  of q/. q / i s  

said to be of order =< d if no d + 2  distinct members  of ~ intersect. The 
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following characterization of dimension is proved in [4}: dim K =< d if and only 

if for each ~- > 0 there exists an open cover  ~ of K with mesh ~ <-_ e and of 

order less than or equal to d. 

The following deep theorem is due to Nagata ([9, p. 1381). See also [8] for a 

proof. Nagata's theorem will be our main tool in proving (17) of Theorem 2. 

N^(;ATA'S Tr~t-ORE.,a. Let K be a compact metric space. Then dim K ~= d if 

and only if there exists a topology preserving metric p on K (called a Nagata 

d-dimensional metric) with the following property: 

(19) for each e . > 0  and every d + 3  points y , , ' . . , ya . , . , x  in K with 

p ( S ( x , ( e / 2 ) ) , y , ) < e ,  i=  l , . . . , d + 2 ,  there exist I - < i < ) ' ~ d + 2  such that 

p(y,. y,) < v. 

(S(x, r) denotes the ball in K with center  x and radius r). It is obvious that if p 

is a d-dimensional Nagata metric on K, then p has the following property:  

(20) i [ y , , . . . , y s . . . , x a r e p o i n t s i n K ,  then thereex i s t i ,  i, k w i t h i ~ L s o t h a t  

p(yi, yj ) <= p(X, y~ ). 

Observe that the usual metric on the real line enjoys property (20), but not (19). 

5. Proof of "only if"-part of Theorem 2 

This proof is vitally influenced by the construction of the usual Schauder 

basis of C(0. 1) (see [10, p. 117). The reader is strongly advised to have the case 

K --- [0. I] in mind when reading the proof. 

Let d i m K  =<_-d and let p be a d-dimensional Nagata metric on K, in 

accordance with Nagata's theorem. We select now a sequence in K which will 

eventually play the r61e of that defined in (I I). In the usual construction of the 

Schauder basis of C(O, I), this sequence is the set of dyadics. 

First. let 6, :: d i ame te r (K)  and let Ix , , - . . . x . , }  be points in K so that 

(21) p(x, ,x i )= &, for i ~  j ,  

(22) {S(x,, 6,)}7_-', is an open cover  of K.  

Clearly 2 <-_ n, < ~. Next,  let 8 be a Lebesgue number of the cover  mentioned in 

(22) and set 

(23) 
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and pick x, , .~, . . . ,  x,~ in K so that 

(24) p(xt, xi) --- 82 

and 

(25) 
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for i _< - i< j  <n2  

{S(xt, a2)}:'z, is an open cover  of K.  

lsraelJ. Math., 

Continuing in this way we get a sequence {x,}7=, in K, an increasing sequence 

2 -  < n , < n z < . . .  of integers and positive reals 8 , , a2 , . . .  so that for each 

l = 1 , 2 , . . .  

(26) p(x,,xi) >-at for l<-<_i<j<=nt, 

(27) {S(x,, at));"_-, is an open cover  of K ,  

(28) 5,5,., is a Lebesgue number of the covering {S(x,, a~)}i"-,, 

(29) a~§ max p (x ,{x , , . . . , x . , } ) .  
x E K  

(29) ensures only that nt < nt.,. Observe that ET=t§ ar < at for each l and 

that {x,}7=~ is dense in K.  

LEMMA 6. {S(x,,at)}7'-, is of  order <=d [or l = l , 2 , . . .  

PROOF. L e t x ~ K  a n d x E  1"1~*2 j=1 S(x,j, a~). By (20) there exist a, b, c with 

a ~ b, so that p(x,o, xt~)<= p(xto, x ) <  at. This and (26) give that io = ib. �9 

For convenience we introduce the following notation: we call the points 

{x , , . . . ,x . ,}  the /th generation, ! = 1 ,2 , - . .  For every integer n > 0  there is a 

unique integer l (m)  such that n,~,~<m<=n,m,, .  (If l <-<_m <=n,, put 

l (m)  = 0, no= 0.) For each l = 1 ,2 , . . .  we define the relatives of x., in the lth 

generation (l-rel 's of x,,) as follows: 

(30) if l ( m ) < l ,  the I-rei's of x,. are x,, itself, 

(31) if / ( m ) =  l, the /-rel 's of x,, are those x~ in / th generation with 

p(x~,xj) < a,, 

(32) i f l ( m ) > l ,  xj is an l-rel of x,, ifxi is an l-rel of some (! + 1)-rel~f  xm. 

This inductive definition can also be stated explicitly as follows: 

(33) xj is an / - r e i  of xm if and only if either l(m ) < l and j = m, o r l - < l ( m )  
and there exist a sequence of (not necessarily different) indices j = j ,  

jr.,,'" ",j,=, ./,,,~., = m with j, -< nt and p(xj,,xj,§ < at for i = l, ! + 1 , . . . ,  l(m).  
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Let  us denote by R',. the set of relatives to x,. in the lth generation and by J~ 

the cardinality of R I,,. We write also R,. and J,. for R ~"' and J~"~ respectively.  

LEMMA 7. I f  Xj E R~, then p(xm, xj) <2Or. 

PROOF. If 1 > l (m)  this is obvious, so let ! <- l(m).  From (33) we get that 

p(x~,,x~) < ~5, + -. �9 + r < ~, + ET-~.t & < 2r (by 28). �9 

LEMMA 8. J~_--<d+l [or all m and l. 

PROOF. If l > l ( m )  this is obvious, so let l<- l (m) ,  and x, E R~. By 

definition there is an xk E R~ *t, so that xj is a relative to xk in the lth generation. 

From Lemma 7 we get that p(xk, x,.)<2~t.~ <�89162 (by 28), so xk E S(x,,,�89 

Since p(x;, xk)< ~5t this gives that p(S(xm, �89 r x ; )<  r If R I,. consisted of more 

than d +1 points, we could apply Nagata's theorem to get xj, and x h with 

j, ~ ]~ _-< n, and O(xi,, xj2) < ~t. Since xj, and x;2 are in the lth generation this would 

contradict  (26). �9 

REMARKS. (i) If l = l (m) ,  Lemma 8 follows easily from Lemma 7 and (20), 

so 

(ii) if K = [0, 1] and {x,}7=~ are the dyadics,  Lemma 8 holds in spite of the 

observation following Nagata 's  theorem. 

Let  us now show that if x, and xm are close in the metric p on K, then they are 

also close in the sense that they have common relatives: 

LEMMA 9. Let n, m and I be positive integers. If O(x.,xm)< ~§ then there 

exists a common relative x ~ in the lth generation to all relatives o[ x, and xm in 

the (l +'l) th generation, i.e. 

(34) f-) R ~  if O(x.,x..)<~t.,.  
xiCR~ "IuRIn +] 

PROOF. We claim that diameter(R~*' U R'.*') <58t~, .  Indeed, let 

y,z  E R~*tU R'o". If y,z 6 R~. § then by Lemma 7, p ( y , z ) < p ( y , x . ) + O ( x . , z ) <  

4 ~ . , .  The same argument applies if y, z E R~ § If finally y • Rt. +' and z E R~ § 

also by Lemma 7, p ( y , z ) < p ( y , x . ) + p ( x . , x m ) + p ( x . . , z ) < 5 ~ t , , .  From (28) it 

follows that there is an x ~ in the lth generation so that R~§ Rt. *~ CS(x~ 

and by definition of relatives we are done. �9 

DEFINITION. For l = 1 , 2 , . . .  let E,, be the subspace of C ( K )  consisting of 
those functions for which 
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1 
(35) For all m > n ~ : f ( x , , ) = ~  ~ f(xj) .  

x i E R m  

(Recall that R,~ = R~'~) by definition.) 

REMARK. In the case K = [0, 1], E,, consists of those piecewise linear 

functions in C(0,1) whose points of indifferentiability are contained in the set 

of dyadics in the lth generation, {0, 1/2'-', 2/2 ~ ' , . . . ,  1}. 

LEMMA 10. E,, is an nt-dimensional subspace of  C(K) .  Moreover for every 
choice of  nt reals, h," �9 ", t,,, there exists an f E E,, with f(x~) = t, i = 1,. �9 nt. 

PROOF. Clearly for every f E E . , ,  I[fl[ = sup{[f(xe)[ l1 =< i =< n,}, and hence 

dimE,, =< nt. We prove the second part of the lemma. Let t , , .  �9 t,, be given. 

Define a function f on {x,}7-, by 

(36) f ( x , )= t ,  for l<=i<=n, and f(x,,) = 1  ~] f(x,) for m > n l .  
J m  x i E R m  

This determines f uniquely on {xm}Z=,. It remains to show that f is uniformly 

continuous on {Xm}Z=, and hence can be extended (uniquely) to a function in 

C(K) .  Set a = min,=~,~.,t, and b = max,~,~.,t,. The uniform continuity of f 

follows from 

(__CF-' 
(37) If p(x. ,xm)<6k then If(x.)-f(xm)l<=\d+l/ ( b - a ) .  

To prove (37), let k be given. We may assume that k > 1. (For k _-< ! (37) is 

trivial). Let x. and xm with p(x. .xm)< ~ be given. Since & _-< &+, we can use 

Lemma 9 to find an x ~ in ("1 x~+,~n~§ R~. Let x, E R~§ R~ § Then 

1 
(3 8) f(x, ) = ~ ,,,~R ~ f(xj) 

= ! f (x ' )  + l ~ f(x,) 
Ji Ji ~j~e~\{xq 

< 1 A - I  f ( x ' ) +  d 
=-= f (x ' )  + b _-< b i ,  �9 d + l  J i -  

and similarly 

(39) f ( x , )  = f ( x ' )  + I f ( x j )  

> l f ( x , )  + a > 1 + d 
= . = f ( x ' )  d + l a .  
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Hence the values of f on Rt$ 'U R~ +' are all in the interval 

r f ( x ' )  d (40) [a, ,b ,]=[_d_~+_d__.~a,  f (x '? + . d  b] 
d + l  d + l  J 

of length (b - a ) d / ( d  + 1). 

Similarly, if k > l + i we can find an x '§ in N x,~R.'*,uR.,-,R~*'. This together 

with (40) gives by the same calculations as in (38) and (39) that 

f (R  ,.2 U R ~+2) C [a,.,. b,+,] (41) 

where 

I + 1  I+l 1 [f(x )+ ct a f(x )+ ct 
(42) [ a ' * " b " ' ] = [ d + l  d + l  ~ ~-~--~ b, 

is of length (b - a ) ( d / ( d  + I)) 2 . 

Continuing inductively in this way we get that 

(43) f(Rk. U R ~ ) C [ a k  ,.bk_,] with bk-,--ak-,  = (d/(d  + l))k-'(b - a ) .  

Since by definition the values of f in x. and x,. are convex combinations of the 

values of f in R ,  k and R~ respectively, we get that f (x . )  and f(x, .)  are in 

[a~ ,,bk_~] too and the lemma is proved. �9 

LEMMA 11. C ( K )  = U 7., E.,. 

PROOF. Let g E C ( K )  and e > 0  be given. Let i be big enough so that 

(44) p ( x , y ) < 2 &  implies I g ( x ) - g ( y ) l < e .  

By Lemma 10 there exists an f E E . ,  such that 

(45) f ( x , . )=g(x , . )  for l<=m<-n,.  

We claim that I I f - g  It<= ~. Indeed, let i be a positive integer and let x,. E R~. 
Then by Lemma 7, p(x,,,.x,)<2B,, so by (44) and (45), 

(46) I f.(x,,, ) - g (xi) { = I g (x,,,) - g (x,) I < E. 

Since f(x,)  is a convex combination of points in f(R~), (46) gives that 

(47) I ffx,)  - g(x,) I < e. 

The sequence {xi},-u is dense in K, so we are done. �9 

We are now ready to define the functions {e..,}~:,.. This is done inductively b'y 

( 4 8 )  e, . ,  = I ~ ,  



158 

(49) 

(50) 

and 

(51) 

We also set  
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e . . . ( x , . ) = 6 . , ,  for  m=<n. .~§  n = 2 , 3 , . . - ,  

e... ~ E.,,.,§ 

lsrar Math., 

e . . J , , = e . . ~ - e . . ~ ( x . + O e . . ~ . . + , , i < n + l ,  n = 1 , 2 , . - .  

for  i=<n  and n = l , 2 , . . . .  

Indeed ,  (55) is c lear ly  t rue  for  n = 1, so  suppose  it is t rue  fo r  all in tegers  =-< n. 

(49) and (50) give that  (55) is t rue  for  e . + , . . . ,  so let i =< n. If  m < n + 1 or  

n + 1 < m =< n . . . , . ,  then e.. , , ,(x,, ,) = e,~, (x,.). Moreove r ,  e . . , . , (x.+,)  = 0, so 0 

<= e..l~(x,.)<-_ 1 for 1 =< m =< n . .+ .+ , .  This and the fact that  e . . l .~E E.,t.§ give 

that  0 -  < e.+,, ,~ 1,,. �9 

The  same  a r g u m e n t s  show that  

(56) e..~(x,,)=8~.,, for  i = i , m = < n ,  n = l , 2 , . . . .  

An induct ion a r g u m e n t  using (48) and (51) shows  easi ly  that  

(57) ~ e.,~ = I,~ for  n = 1 , 2 , - . . .  
i = 1  

H e n c e  {e.,~}~'=, is a non-nega t ive  par t i t ion of  uni ty with Ile..~ll= 1, so E .  is 

i somet r ic  to/7.. Le t  us show that  the co r r e spond ing  mat r ix  A = {e..i(x.+~)}i.,. has  

the p rope r t i e s  (16) and (17) of  T h e o r e m  2. First  

(58) Fo r  all n, i <-_ n, e.,~(x..,) E {0, l /J .+,}.  

Indeed ,  if n = n..~+,, (58) fo l lows at  once  f rom (56) and (35), s ince e.,~ E E,. ..... . 

I f  n < n . . ~ + ~  then  e . . . ( x . + 0 = 0 ,  so e..~(x.+O=e._~.~(x.+O, which  equals  

We cla im that  

(55) 0 =< e.,i =< 1K 

(54) C(K)= QJ E.. 

(52) E .  = span{e.j}~'. , ,  n = 1 , 2 , - . .  

O b s e r v e  tha t  (52) agrees  with the p rev ious  definit ion of  E., and  tha t  (51) impl ies  

that  

(53) E.  C E . + , ,  n = l , 2 , . . . .  

F r o m  L e m m a  11 we get now that  
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e. _2.(x.. ,) ,  e._3,~(x., ,) and so on. Final ly  if i <= n.. ,  we get  e.,,(x..,) = e.,,.,,,(x.+f). 
Since e ...... iE  E .  ..... (58) fo l lows  f rom (56) and (35). If  i >  n . . ,  then  e.,~(x.+,) 
equals  e~.(x.+,) which is 0 by  (49). This  p r o v e s  (16) of  T h e o r e m  2. T o  p r o v e  (17) 

we show:  

(59) For  each  m, ! = 1 ,2 , .  �9 �9 at mos t  d + 1 of  the n u m b e r s  {e,,., (x,, )}?- , 

are  n o n - z e r o .  

I f  m =< nt (59) is obv ious  by (56), so let m > nt. If  e,,.,(x=)>O, then  by  (56) and 

the definit ion (35) of  E,,,x~ must  be  a re la t ive  in the / th  genera t ion  of  x,., i.e. 

x, E R~,  so (59) fo l lows f r o m  L e m m a  8. This  p r o v e s  the "on ly  i f " -pa r t  of  

T h e o r e m  2. 

6. Proof of the "if"-part of Theorem 1 

A s s u m e  now that  K is a c o m p a c t  met r ic  space  and A ={a.. i}i~.  is a 

r ep re sen t ing  matr ix  for  C(K) ,  so that  X~'=f a..i = 1 and A(A)  > l/(d + 2). We use 

the nota t ion  of  Sec t ion  2. Fo r  e > 0 set  

(60) U',., = {x E K [ e..,(x) > e}. 

We need the fo l lowing  l emma:  

LEMMA 12. For all e > 0, l i m , _ = m a x ~ , d i a m e t e r ( U ~ . 3  = 0. 

PROOF. Le t  e > 0  and a s s u m e  the c o n v e r s e ,  i.e. that  there  are a 8 > 0 ,  a 

s u b s e q u e n c e  0 < n, < n2 < �9 �9 �9 of  the integers ,  integers  if, i2,. �9 �9 with i,. _-< n=, 

and s e q u e n c e s  {Y,,}7,-i and {z,,}7,-, in K so that  

(61)" p(Y, . ,z , . )>6,  e...i=(y,.)>e and e...~=(z,.)>e. 

Pass ing  to s u b s e q u e n c e s  we m a y  a s s u m e  that  the s e q u e n c e s  {y,.}7.-, and 

{z,. }7.=, c o n v e r g e  to y and z respec t ive ly .  By (61), y #  z, w h e n c e  we can find an 

f ~ C ( K )  so that  if m is large enough ,  then 

(62) f ( y . . ) = 0  and f ( z . . ) = l  

and  so that  0 - < f  ~ 1. Le t  m be a n y  integer  large enough  to  sa t i s fy  (62). W e  

show that  I [ f - Q . . J I l > - e 2 / ( l + e )  for  each  such m, which  will con t rad ic t  

L e m m a  5. If  I l l - Q . . J I [  < e2/(l + ~), then 

2 t t  

(63) ~ 1  + e > I f ( Y . . ) -  Q..dt(Y..) I = Q..J(y . . )  = ~ / ( x , )  e.=,,(y.=) 
i = I  

>- f(x , , )  e..,, .  ( y . . )  > f (x , . )  e 
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and similarly 
2 nm 

s > [ . f ( z . . ) -  Q . J ( z . . ) l  = 1 - ~ s e...,(z..) 
l + e  ~=~ 

(64) 
= 1 - f (x , . )  e . . . i . (z . . )  - ~ f(x ,)  e.~,,(z..) 

i~dim 

=> 1 - [ ( x i . ) -  ~ e . . , , (z . . )_-  > 1 - / ( x , . ) - ( 1 -  e ) =  e - / ( x , . ) .  
i~im 

(63) and (64) together give that 

62 8 E2 
(65) - -  > e 

1 + ~  l + e  l + e  �9 

This proves  L e m m a  12. �9 

Recall that by L e m m a  4, if A(A) > A > 1/(d + 2), there exist infinitely many  

n ' s  so that m a x ~ . e . , ~  _>- A, so we can find a sequence 1 -< n, < n2 < �9 �9 �9 with 

1 
(66) max e.,.~ > ~  for l = 1 , 2 , . . .  

f T T l l (d  + 2 ) l .  I Thus for each l = 1 ,2 , - .  , t  . . . .  j .  covers  K. This open cover  is clearly of 

order  _-<d,  since Y~?'_-~e.,.~--- 1 and by L e m m a  12 we have that 
�9 l / ( d + 2 )  n! ~_  l ]mt~mesh{U., ,~ }~=l = 0. From this it follows that d i m K  < d. �9 

7. Dimension and Choquet-simplices 

In this section we prove  an extension of the " i f " -par t  of Theorem 1. Before  

stating this extension,  we introduce some notations. Le t  S be an infinite 

dimensional  metrizable Choquet-s implex (cf. [1]). A (S) is the Banach space of 

cont inuous real valued affine functions on S with the sup-norm. As remarked  in 

Section 1, A ( S ) - s p a c e s  can be character ized as those preduals of L,  which 

have a representing matrix A = {a..i}~. with E~'=~ a.,~ = I. Every  C ( K ) - s p a c e  

for  K compac t  metric is isometric to the space A (S),  where S is the state space 

S ={/z E C(K)*[ II = p.(1K) = 1} with the oJ *- topology f rom C ( K ) *  ([1]). 

Clearly in this case K = 0.S. Converse ly  it is well known that if a.S is compac t  

then A ( S ) =  C(O.S). 

Now let A = {a.,i},_~. with X?=, a.,i = 1 be a matrix representing a space A ( S )  

and {e.,i}~z. the corresponding unit-vector  basis of E.. We regard A ( S )  as a 

closed subspace  of C(O.S). Preceed now as in Section 2 with 0.S instead of K 

and A (S) instead of C(K) .  Problems arise only in the proof  of  L e m m a  2, but 

we can also prove  
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(68) 

Clearly 

(69) 

and 

(7o) 

LEMMA 13. The set {xl}7_~ is contained in O,S and dense in a,S. 

PROOF. Let us first prove the latter. Assume the converse, i.e. that V = 

{x,}7-~ does not contain a,S. Then by the Krein-Milman-Rutman theorem ([2, 

p. 801) 

(67) H = conv V~  S. 

In particular there is a z E O , S \ H .  By the Hahn-Banach theorem there 

exists an f E A (S) with f ( z )  = I and max f ( H )  <- O. As in the proof of Lemma 2 

this implies that dist ([, U , - ,  E,)=> ,~, which contradicts (1). To prove the first 
assertion let i be any positive integer and let 

f = ~  2 -k 'el,k.i. 
k ~ O  

Ilfll ~ 1 

{x,} = {x ~ s [ f ( x )  = I} .  

Thus x, E a,S, since it is a unique peak point for [. 

THEOREM 4. Let S be a metrizable Choquet-simplex and assume that A ( S )  

has a representing matrix A = {a..,},~, with ~?=, a.., = I and A(A) > 1/(d + 2). 

Then dim C <= d [or every compact subset C of a,S. 

PROOF. Proceed as in Section 7 with K and C ( K )  replaced by C and A (S) 

respectively. The existence of a function [ E A (S) so that 0_-< f _-< 1 and with 
the property (62) follows easily from [1,p. 91]. �9 

REMARKS. (i) We cannot prove that dim O,S <= d by replacing in Section 6 

K by &S. Compactness is strongly needed in Lemma 12. In the next section we 

give an example where diameter ({x E a,S I e,..(x) > !/3}) = I all n. (ii) The "only 

if"-part of Theorem I cannot be extended to A (S)-spaces. We give in Section 8 

an example of a simplex S with dima, S = 0, but A(A)-<�89 for every matrix A 

representing A (S). 

8. Open problems and examples 

From Section 7 the following problem arises: 
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PROBLEM 2. Let  S be a metr izable  Choque t  simplex and A = {a..,}i.. a 

matrix with ET=~ a..~ = 1 and A(A)  > l / (d  + 2) represent ing  A ( S ) .  Does  it fo l low 

that dim a.S ~ d or  even dim a.S_- < d ?  

Obse rve  that  f rom T h e o r e m  4 it does  not  fol low that  dim O,S <<- d. There  exist  

s implices S with dim C < dim O,S for  eve ry  c o m p a c t  subset  C of  O,S (see [6] 

fo r  such examples  and also [3]). The  fol lowing example  will jus t i fy  the r emarks  

p reced ing  T h e o r e m  4. 

EXAMPLE 1. Let  X be the subspace  of  c - - t h e  space  of  converg ing  

sequences  in R m c o n s i s t i n g  of  those sequences  (t ,)L, fo r  which  

(71) 

(72) 

(73) 

(74) 

(75) 

i.e. 

(76) 

lim t, = �89 + t2). 

Define {e,.i}~=, in X as fol lows:  

e l , l  ~ -  l , 

{i " 

e,.,(k) = if 
else 

k = l  
2<=k<=n, 

i if k = 2 
e,.2(k) = if k = I 

else 
or  3<k<n,= = 

e,., (k) = 6,.k else. 

el., =(1,1,1,1,1, . . . ) ,  

i i I I N  ! ! I t  e2., = (1,0,~4,.~,.--), ez.2 = ~ . . . .  2,2,2,'"), 

e,.l = (1,0,0,�89 e~.2 = (0,1,0,�89189 e,.3 = (0,0, 1,0,0,-..), 

e,., = (1,0,0,0,�89 e,.2 = (0,1,0,0,�89 

e,.3 = (0,0,1,0,0,...), e,., = (0,0,0,1,0,..-), ..., 

Set  

(77) 

and let A = {a,.i}~, 

(78) 

i.e. 

E,  =span{e, . ,}"=, ,  n = 1,2, . - .  

be the tr iangular matrix with 

a,.I = 1, a,.l = a,.2 = �89 if n > 1 and a,.i = 0 else: 
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(79) A = 

1 

_1 ! 
2 2 

~ 0  

I I ~ 0 0  

�89189 

�9 o . 

B 

It is easy to see then, that (1)-(4) are valid, so X is an A (S) -space  with A as a 

representating matrix. Clearly a.S  = N, the natural numbers, and the points 

defined in (11) are x, = i. a , S =  N =  N U {~}, the one-point compactification of 

N with the metric p ( n , m ) =  I ( l / n ) - ( I / m ) l ( ( 1 / ~ ) = O  ). That 0 ~  O,S follows 

clearly from (71), since ~ = �89 + 2). We have now that 

(80) )t(A) = lim sup inf max e,.~(l) = ~. 

. , V I/3 Let V ~ ' ~ = { k E N  le~j (k)>I /3} .  Then by (73) _ , . , = { l , n + l , n + 2 , . . . }  with 

diameter  (VIJ.~) = I. Hence Lemma 12 is not valid in this case. To show that the 

converse  of Theorem 4 does not hold, we shall show that for every  matrix 

A = {a~.,}~, with E~'=, a~., = 1 representing X we must have A(A)=<�89 although 

dim,9,S =0 .  Indeed, let A be such a matrix, {e,.,}~,, the corresponding 

partitions of unity and {x,}7=, as defined in (1 I). Since a,S  = N is a discrete 

space, it follows from Lemma 13 that {x,}7=, = a,S. Especially we can find i, and 

i2, so that x,, = I and x~--2,  and hence, if n => max ( i ,  iz), we get that 

(81) lira e..,,(l) = �89 (e..,,(1)+ e..,,(2)) = 

and 

(82) lira e..,~(I) = ~(e..,2(l)+ e,.,~(2)) = ~. 

Hence,  for every  n ~ max (i,, i2), 2,,,,,.~2e~.~(/)<~ if l is big enough (use (8)). 

This, (81) and (82) imply that 

(83) i n f m a x  e,.,(l)<-_~ for n _ - > m a x ( i ,  i2) 

and we are done. 

The following example is due to J. Lindenstrauss. 
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and B = {b.,,},-~. 

that  

EXAMPLE 2. Le t  H and K be two compac t  metric spaces and A = {a,.~}i.,, 

represent ing matrices for  C(H) and C(K) respect ively,  so 

(84) ~ a.., = ~ b.., = 1 and a..,, b.., E {0,�89 1}. 
i = 1  i = 1  

We show that  also C(H x K) has a represent ing matrix C = {c..~}~, with 

(85) ~ c , . , = l  and c,., E {0, �89 . 
i = !  

Indeed let {e.,,}~_~. and {/.,~},-,. be the posit ive norm-one parti t ions of uni ty 

corresponding to the matrices A and B respectively, .  Then the vectors  

{e.,, | f.,s},",~=, defined by 

(86) e.,, | [.,~(h, k) = e. . ,(h).  L.j(k) (h, k) ~ H • K 

const i tu te  for  each n a posit ive norm-one partit ion of uni ty on H • K, i.e. 

n2 (87) E. ,  = span {e.,~ | = 1~,. 

Clearly E.2 CE~. . .2  and C(H x K )  = U ~=, E.2, so it remains only to show that  

the sequence  El,  E4, E9,... can be "filled up"  so that  the corresponding matrix 

satisfies (85). We have that  for every  i,] _-n, 

(88) e.,, | [..j = e.+,,~ | L+,a + a.,,e.+,..+,| f.+,,j+ 

b.,s e.+,,, | f.+,,.+, + a..,b.a e.§ | f.+,..+,. 

This shows that  problems in filling up only arise when a.,i = a.a = b.., = b..k = 1. 

For  convenience  we will assume that  n = j = k = 2 and l = i = I and fill up the 

gap f rom E,  to Eg. The other  gaps are t rea ted similarly. The basis of E4 is 

(89) e2., | f2,,, e2,1 | ]2.2, e2,2 | and e2.2 | f2,2. 

Choose  as a basis for  E5 the vectors  

(90) e3,, @ .f3.2 + �89 e3.3 @ f3.. e3,, @/3.2 + �89 e3.3 | e2.2 | .f2,,, 

e2,2@[2.2 and e3,,|189 

Since, by (88), e2., @ A,, = [e3,, @ .f3,, + �89 e3,3 | .f3,d + �89 [e3,~ | + �89 e3,, | A,3] we 

get c4,, = �89 and clearly c4,3 = c4,, = 0. Table I shows how we proceed 
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TABLE I 
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I 2 3 4 5 6 7 8 9 

E,, tz,| 

E,, + k~,| 

e7 e,~| 

E~ t~t| 

Eo e33| 

e2,|  ,~'Qf2J ez::,@hz 

i 

*3J| e31@h~  e32~h2 e~| e~:~h3 

eH| r .~ ; ' ~ )  )rJ2 e3l@fiJ t32@L~3 

i 

i e~3| e~3| 

e~j| e~j| ejj| 

with the corresponding matrix elements 

I I ~ 0 0 

0 0 ~ ~ o 

-~ 0 ! 0 0 2 2 

1 1 0 ~ 0 ~ 0 

o o o o 

0 

0 0 

1 0 . 

This observation and Theorem 2 show that if K is a product  of 1 dimensional 

spaces then C(K) has a representing matrix with a,.k E {0,�89 I}. It is easy to see 

that other  operations (like cartesian products of infinitely many factors or 

disjoint unions) preserve the property C(K) having a representing matrix of 

the above type. We are naturally led to 

PROBLEM 3. IS it true that every  C(K)-space  has a representing matrix {a..,} 

with X?=~ a~., = ! and a~., E {0, I, �89 

The following example shows that the answer to Problem 3 is negative for 
A (S)-  spaces: 

EXAMPLE 3. Let  X be the subspace of c consisting of those sequences 
(t,)7-, for which 
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1 2 
(91) lim t, = 3 t ~ +  t~. 

As  in E x a m p l e  1 it is e a s y  to p r o v e  that  X is an A ( S ) - s p a c e .  W e  c la im tha t  X 

has  no r ep re sen t ing  mat r ix  A ={a.,~},~. wi th  E?=~a.j = 1 and  a.., E{0,�89 

Indeed  let A be a n y  mat r ix  with ~ = j  a..~ = 1 r ep re sen t ing  X =  A ( S ) .  L e t  

{e.,i}~. be  the  c o r r e s p o n d i n g  par t i t ions  of  uni ty  in A (S)  and  {x~}7=~ as def ined in 

(11). As  in E x a m p l e  1 we  get  tha t  {x,}7=~ = 0.S = N, so we  can  find i~ and  i2 with 

x~, = 1 and  x~ = 2. H e n c e  if n => m a x  (i,, i2) = no, we  get  tha t  

1 2 1 2 1 
(92) l im e..,,(l) = 3 e..,,(1) + 3 e.,,,(2) = 3" 1 + 3" 0 = 3" 

Le t  lo be  so big tha t  

1 
(93) e~o.,,(l) < ~ fo r  all l > lo. 

By  the  s a m e  a r g u m e n t s  as in E x a m p l e  1 we  can  find an nz => no, so tha t  

{1, ..-, lo} C{x~, -.., x.,}. L e t  n o w  n be  any  integer  => n~. S ince  e.,i(xj) = 8i,j f o r  

i ,]<=n we get  tha t  e.,, ,(1)= 1 and  e.. , ,(l)=O fo r  l = 2 , - " , l o .  Since (by (2)) 

e..,, < e~o,,, we  get  f r o m  (93) that  e.,,,(l) < �89 fo r  l > lo, so 

(94) f o r a l l n  => n,: e.,, ,(1)= I and  e.,,,(l)<�89 fo r  l >  1. 

L e t  now n _-> n~. We  h a v e  

(95) e.,,~ = e~+,,,, + a.,,, e~+~,.+, = e.+~.,, + e..,,(x.+,) e.+~,.+~. 

I f  e.,~,(x.§ 0, e.§ = e..~,, so 

(96) e~+,,,, = e . + 2 . , ,  + e~+,,,,(x.+2)e.§ 

= e~+~.~, + e.,i,(x.+2)e.+2,.§ 

Cont inue  in this w a y  until  the first m > n~ fo r  which  e.,~,(Xm) ~ O. Such  an m 

exis ts  by  (92) and f r o m  (94) we  get  

0 < a.,,~, = e.,,,(x..) < �89 (97) 

and  we are  done .  
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